
La situazione può essere rappresentata da questa figura. Se chiamo $n$ il numero di punti da giocare prima che il gioco termini e $\overline n$ il numero medio di questi punti, avrò una probabilità $p^2$ che sia $n=2$, una probabilità $q^2$ che sia $n=2$ e una probabilità $2pq$ che in media sia $n=\overline n+2$. Posso dunque scrivere: $\overline n=2p^2+2q^2+2pq(\overline n+2)$. Risolvendo per $\overline n$ ottengo $\overline n=2\ \dfrac{p^2+2pq+q^2}{1-2pq}=\dfrac2{p^2+q^2}$ dove ho tenuto conto del fatto che $p^2+2pq+q^2=(p+q)^2=1$. Si ha il massimo per $\overline n$ quando $p=q=1/2$ e allora $\overline n=4$. Quanto maggiore è la differenza in valore assoluto fra $p$ e $q$, tanto più $\overline n$ si avvicina a $2$.